Skip to main content

Advertisement

Log in

Assessment of Global Potential of Biohydrogen Production from Agricultural Residues and Its Application in Nitrogen Fertilizer Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In the present study, an attempt was made to investigate the potential of some of the major world’s crops, including wheat, corn, rice, barley, sugarcane, sugar beet, potatoes, and oats, to produce biohydrogen. The collectable amount of agricultural residues that could especially be used to produce hydrogen was estimated in Africa, Asia, Central America, Europe, Northern America, Oceania, and South America, and the potential amount of ammonia as the main nitrogen fertilizer was estimated. Double exponential smoothing method was employed to forecast the future crop production and area harvested. It was calculated that about 10.56 (in 2013) and 15.5 (in 2030) Mt of biohydrogen and 59.84 (in 2013) and 85.86 (in 2030) Mt of ammonia could be obtained globally. In addition, the application of biohydrogen from cereal residues to provide their nitrogen requirement was calculated based on the cultivable area. Nitrogen requirements of near 17%, 31%, 12%, and 33% of the global cultivation area of wheat, corn, barley, and rice would be possibly supplied by the collected residues of the same crops, respectively. Eventually, a discussion has been made on the amount of potentially savable natural gas and reduction in greenhouse gas (GHG) emissions and consequent social costs by global development of biohydrogen industries.

Graphical abstract

Global Potential of Biohydrogen production from Crops Residues

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Demirbas A (2009) Global renewable energy projections. Energy Sources, Part B: Economics, Planning, and Policy 4(2):212–224. https://doi.org/10.1080/15567240701620499

    Article  Google Scholar 

  2. Singh S, Jain S, Ps V, Tiwari AK, Nouni MR, Pandey JK, Goel S (2015) Hydrogen: A sustainable fuel for future of the transport sector. Renew Sustain Energy Rev 51:623–633. https://doi.org/10.1016/j.rser.2015.06.040

    Article  CAS  Google Scholar 

  3. Bicer Y, Dincer I, Zamfirescu C, Vezina G, Raso F (2016) Comparative life cycle assessment of various ammonia production methods. J Cleaner Prod 135(Supplement C):1379–1395. https://doi.org/10.1016/j.jclepro.2016.07.023

    Article  CAS  Google Scholar 

  4. Frattini D, Cinti G, Bidini G, Desideri U, Cioffi R, Jannelli E (2016) A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants. Renew Energy 99(Supplement C):472–482. https://doi.org/10.1016/j.renene.2016.07.040

    Article  CAS  Google Scholar 

  5. Bicer Y, Dincer I (2018) Life cycle assessment of ammonia utilization in city transportation and power generation. J Cleaner Prod 170:1594–1601. https://doi.org/10.1016/j.jclepro.2017.09.243

    Article  CAS  Google Scholar 

  6. Giddey S, Badwal S, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energy 38(34):14576–14594

    Article  CAS  Google Scholar 

  7. Wang B, Mi Z, Nistor I, Yuan X-C (2018) How does hydrogen-based renewable energy change with economic development? Empirical evidence from 32 countries. Int J Hydrogen Energy 43(25):11629–11638. https://doi.org/10.1016/j.ijhydene.2017.03.059

    Article  CAS  Google Scholar 

  8. Vivas FJ, De las Heras A, Segura F, Andújar JM (2018) A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renew Sustain Energy Rev 82(Part 1):126–155. https://doi.org/10.1016/j.rser.2017.09.014

    Article  CAS  Google Scholar 

  9. Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27. https://doi.org/10.1016/S0360-1285(99)00005-2

    Article  CAS  Google Scholar 

  10. Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology 227:335–344. https://doi.org/10.1016/j.biortech.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  11. Fixen PE, Johnston AM (2012) World fertilizer nutrient reserves: a view to the future. Journal of the Science of Food and Agriculture 92(5):1001–1005

    Article  CAS  PubMed  Google Scholar 

  12. Asadi N, Karimi Alavijeh M, Zilouei H (2017) Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran. Int J Hydrogen Energy 42(4):1989–2007. https://doi.org/10.1016/j.ijhydene.2016.10.021

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang Y, Zhang Z, Lee D-J, Zhou X, Jing Y, Ge X, Jiang D, Hu J, He C (2017) Photo-fermentative hydrogen production from crop residue: A mini review. Bioresource Technology 229(Supplement C):222–230. https://doi.org/10.1016/j.biortech.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  14. Granovskii M, Dincer I, Rosen MA (2006) Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources 157(1):411–421. https://doi.org/10.1016/j.jpowsour.2005.07.044

    Article  CAS  Google Scholar 

  15. Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 37(3):2071–2080. https://doi.org/10.1016/j.ijhydene.2011.10.064

    Article  CAS  Google Scholar 

  16. Djomo SN, Blumberga D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresource Technology 102(3):2684–2694. https://doi.org/10.1016/j.biortech.2010.10.139

    Article  CAS  PubMed  Google Scholar 

  17. Food and Agriculture Organization of the United Nations, Statistics Division (2016) http://faostat3.fao.org/browse/Q/QC/E. Accessed 07.06.16

  18. Appl M (2000) Ammonia. In: Elvers B HSea (ed) Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KgaA. https://doi.org/10.1002/14356007.a02_143.pub2

  19. Karimi Alavijeh M, Yaghmaei S (2016) Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management 52:375–394. https://doi.org/10.1016/j.wasman.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  20. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26(4):361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  21. Hewu W, Haiyan H, Xue D, Minggao O (2013) Hydrogen and fuel-cell vehicle technology. Sustainable automotive energy system in China. Springer, Berlin, pp 301–333. https://doi.org/10.1007/978-3-642-36847-9_10

    Chapter  Google Scholar 

  22. Dincer I, Joshi AS (2013) Case studies. Solar based hydrogen production systems. Springer, New York, pp 91–119. https://doi.org/10.1007/978-1-4614-7431-9_7

    Chapter  Google Scholar 

  23. Simons A, Bauer C (2011) Life cycle assessment of hydrogen production. In: Wokaun A, Wilhelm E (eds) Transition to hydrogen: Pathways toward clean transportation. Cambridge University Press, pp 13-57

  24. IEA (2007) IEA Energy Technology Essentials - Hydrogen Production and Distribution International Energy Agency

  25. Sharif A (2012) Modelling of a Natural-Gas-Based Clean Energy Hub. Waterloo

  26. Chen H, Li X, Hu F, Shi W (2013) Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology 19(10):2956–2964. https://doi.org/10.1111/gcb.12274

    Article  PubMed  Google Scholar 

  27. Hignett TP (1985) Production of Ammonia. In: Hignett TP (ed) Fertilizer Manual. Springer Netherlands, Dordrecht, pp 49–72. https://doi.org/10.1007/978-94-017-1538-6_6

    Chapter  Google Scholar 

  28. Overend R aWL (2007) Biomass Energy. In: Goswami DY, Kreith F (eds) Energy Conversion. CRC Press, pp 1-17

  29. Calvo-Flores FG, Dobado JA, Isac-García J, Martín-MartíNez FJ (2015) Functional and Spectroscopic Characterization of Lignins. Lignin and Lignans as Renewable Raw Materials. John Wiley & Sons, Ltd, pp 145-188. https://doi.org/10.1002/9781118682784.ch6

  30. Littler J, Thomas R (1984) Watersupply systems Design with Energy: The Conservation and Use of Energy in Buildings. Cambridge University Press, pp 289-303

  31. Singh A, Rathore D (2017) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer

  32. Mankins JC (2009) Technology readiness assessments: A retrospective. Acta Astronautica 65(9):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058

    Article  Google Scholar 

  33. Lopez-Hidalgo AM, Sánchez A, De León-Rodríguez A (2017) Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate. Fuel 188(Supplement C):19–27. https://doi.org/10.1016/j.fuel.2016.10.022

    Article  CAS  Google Scholar 

  34. Muharja M, Junianti F, Ranggina D, Nurtono T, Widjaja A (2018) An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology 249(Supplement C):268–275. https://doi.org/10.1016/j.biortech.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  35. Hu B-B, Zhu M-J (2017) Enhanced hydrogen production and biological saccharification from spent mushroom compost by Clostridium thermocellum 27405 supplemented with recombinant β-glucosidases. Int J Hydrogen Energy 42(12):7866–7874. https://doi.org/10.1016/j.ijhydene.2017.01.031

    Article  CAS  Google Scholar 

  36. Corneli E, Adessi A, Dragoni F, Ragaglini G, Bonari E, De Philippis R (2016) Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. Bioresource Technology 216 (Supplement C):941-947. https://doi.org/10.1016/j.biortech.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  37. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products – An overview. Renew Energy 98(Supplement C):203–215. https://doi.org/10.1016/j.renene.2016.02.057

    Article  CAS  Google Scholar 

  38. Yang G, Wang J (2019) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresourcetechnology 275:10–18

    Article  CAS  Google Scholar 

  39. Yang G, Wang J (2019) Synergistic enhancement of biohydrogen production from grass fermentation using biochar combined with zero-valent iron nanoparticles. Fuel 251:420–427

    Article  CAS  Google Scholar 

  40. Tandon M, Thakur V, Tiwari KL, Jadhav SK (2018) Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and deoiled rice bran. Environmental technology & innovation 10:345–354

    Article  Google Scholar 

  41. Zhu S, Zhang Z, Li Y, Tahir N, Liu H, Zhang Q (2018) Analysis of shaking effect on photo-fermentative hydrogen production under different concentrations of corn stover powder. Int J Hydrogen Energy 43(45):20465–20473

    Article  CAS  Google Scholar 

  42. da Silva Mazareli RC, Sakamoto IK, Silva EL, Varesche MBA (2019) Bacillus sp. isolated from banana waste and analysis of metabolic pathways in acidogenic systems in hydrogen production. Journal of Environmental Management 247:178–186

    Article  PubMed  CAS  Google Scholar 

  43. Lu C, Zhang Z, Ge X, Wang Y, Zhou X, You X, Liu H, Zhang Q (2016) Bio-hydrogen production from apple waste by photosynthetic bacteria HAUM1. Int J Hydrogen Energy 41(31):13399–13407

    Article  CAS  Google Scholar 

  44. Antonopoulou G, Vayenas D, Lyberatos G (2016) Ethanol and hydrogen production from sunflower straw: The effect of pretreatment on the whole slurry fermentation. Biochemical engineering journal 116:65–74

    Article  CAS  Google Scholar 

  45. Ozmihci S (2017) Performance of batch solid state fermentation for hydrogen production using ground wheat residue. Int J Hydrogen Energy 42(37):23494–23499

    Article  CAS  Google Scholar 

  46. Mishra P, Ameen F, Zaid RM, Singh L, Ab Wahid Z, Islam MA, Gupta A, Al Nadhari S (2019) Relative effectiveness of substrate-inoculum ratio and initial pH on hydrogen production from palm oil mill effluent: Kinetics and statistical optimization. J Cleaner Prod 228:276–283

    Article  CAS  Google Scholar 

  47. Eker S, Erkul B (2018) Biohydrogen production by extracted fermentation from sugar beet. Int J Hydrogen Energy 43(23):10645–10654

    Article  CAS  Google Scholar 

  48. Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield–a review. Renew Energy 66:570–579

    Article  CAS  Google Scholar 

  49. Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 39(1):1–12

    Article  CAS  Google Scholar 

  50. Khan MA, Ngo HH, Guo W, Liu Y, Zhang X, Guo J, Chang SW, Nguyen DD, Wang J (2017) Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew Energy

  51. Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis–a review. J Cleaner Prod 85:151–163

    Article  CAS  Google Scholar 

  52. Hwang J-J (2013) Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renew Sustain Energy Rev 19:220–229

    Article  CAS  Google Scholar 

  53. Yilmaz C, Kanoglu M, Bolatturk A, Gadalla M (2012) Economics of hydrogen production and liquefaction by geothermal energy. Int J Hydrogen Energy 37(2):2058–2069

    Article  CAS  Google Scholar 

  54. Dowaki K, Ohta T, Kasahara Y, Kameyama M, Sakawaki K, Mori S (2007) An economic and energy analysis on bio-hydrogen fuel using a gasification process. Renew Energy 32(1):80–94

    Article  CAS  Google Scholar 

  55. Sathyaprakasan P, Kannan G (2015) Economics of bio-hydrogen production. International Journal of Environmental Science and Development 6(5):352

    Article  CAS  Google Scholar 

  56. Sattar A, Arslan C, Ji C, Sattar S, Umair M, Sattar S, Bakht MZ (2016) Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. Int J Hydrogen Energy 41(26):11050–11061. https://doi.org/10.1016/j.ijhydene.2016.04.087

    Article  CAS  Google Scholar 

  57. Zhang Q, Lu C, Lee D-J, Lee Y-J, Zhang Z, Zhou X, Hu J, Wang Y, Jiang D, He C, Zhang T (2017) Photo-fermentative hydrogen production in a 4m3 baffled reactor: Effects of hydraulic retention time. Bioresource Technology 239(Supplement C):533–537. https://doi.org/10.1016/j.biortech.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  58. Pasupuleti SB, Sarkar O, Venkata Mohan S (2014) Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: Evaluation with food waste at variable organic loads. Int J Hydrogen Energy 39(14):7587–7596. https://doi.org/10.1016/j.ijhydene.2014.02.034

    Article  CAS  Google Scholar 

  59. Lee H-S, Vermaas WF, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28(5):262–271

    Article  CAS  PubMed  Google Scholar 

  60. Kumar G, Sivagurunathan P, Sen B, Mudhoo A, Davila-Vazquez G, Wang G, Kim S-H (2017) Research and development perspectives of lignocellulose-based biohydrogen production. International Biodeterioration & Biodegradation 119(Supplement C):225–238. https://doi.org/10.1016/j.ibiod.2016.10.030

    Article  CAS  Google Scholar 

  61. Rezania S, Din MFM, Taib SM, Sohaili J, Chelliapan S, Kamyab H, Saha BB (2017) Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. Int J Hydrogen Energy 42(33):20955–20969. https://doi.org/10.1016/j.ijhydene.2017.07.007

    Article  CAS  Google Scholar 

  62. Brentner LB, Peccia J, Zimmerman JB (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environmental science & technology 44(7):2243–2254

    Article  CAS  Google Scholar 

  63. Sharma M, Kaushik A (2017) Biohydrogen Economy: Challenges and Prospects for Commercialization. Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, pp 253-267

  64. Oliveira-Lopes LC, da Silva CHF (2014) Nonconventional Renewable Sources in Brazil and Their Impact on the Success of Bioenergy. In: da Silva SS, Chandel KA (eds) Biofuels in Brazil: Fundamental Aspects, Recent Developments, and Future Perspectives. Springer International Publishing, Cham, pp 413–435. https://doi.org/10.1007/978-3-319-05020-1_19

    Chapter  Google Scholar 

  65. Dincer I, Acar C (2017) Innovation in hydrogen production. Int J Hydrogen Energy 42(22):14843–14864. https://doi.org/10.1016/j.ijhydene.2017.04.107

    Article  CAS  Google Scholar 

  66. Asadi N, Karimi Alavijeh M, Zilouei H (2018) Biological hydrogen production by Enterobacter aerogenes: Structural analysis of treated rice straw and effect of substrate concentration. Int J Hydrogen Energy 43(18):8718–8728. https://doi.org/10.1016/j.ijhydene.2018.03.137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Yaghmaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi Alavijeh, M., Yaghmaei, S. & Mardanpour, M.M. Assessment of Global Potential of Biohydrogen Production from Agricultural Residues and Its Application in Nitrogen Fertilizer Production. Bioenerg. Res. 13, 463–476 (2020). https://doi.org/10.1007/s12155-019-10046-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10046-1

Keywords

Navigation